Line Voltage Model (VAC)			Armature Voltage Range (VDC)	Continuous Armature Current (Amps)		Motor Continuous Range
PAT443-10		$\begin{gathered} 0-90 \\ 0-180 \end{gathered}$		0.0		$1 / 8-1$ $1 / 4-2$
Drive Model		Short Circuit Current Rating		Types of Branch Circuit Protection		MaximumRating ofOvercurrentProtection
		$\begin{aligned} & \text { Maximum } \\ & \text { Current, A } \end{aligned}$	Maximum Voltage,			
	33-10	10,000	240 V	$\begin{array}{\|c\|} \text { Non-time } \\ \text { Delay } \\ \text { K5 Fuse } \end{array}$	$\begin{array}{\|c\|} \hline \text { Inverse } \\ \text { Time } \\ \text { Circuit } \\ \text { Breaker } \\ \hline \end{array}$	30 A

Installation

Mounting

NEMA $4 X$ cased drives come with two 0.73 inch $(18.5 \mathrm{~mm})$ conduit holes at the bottom of the case. The drives may be vertically wall mounted using the four $0.19 \mathrm{inch}(5 \mathrm{~mm})$ slotted holes on the attached heat mounting.

1. Install the mounting screws.
2. For access to the terminal strip, remove the six phillips screws on the front cover.
3. Remove the five phillips screws on the bottom plate. Do not remove the three screws securing
the bottom plate to the heat sink.
4. Set the POWER switch to the OFF position before applying AC line voltage.
5. Install conduit hardware through the 0.73 inch $(18.5 \mathrm{~mm})$ knockout holes. Connect external wiring
6. Place the front cover back into place. Avoid pinching any wires between the front cover and the
heat sink
 the front cover. Reinstall the 5 screws on the bottom plate.

Wiring: Use 14-16 AWG wire for AC line and motor wiring.

Shielding Guidelines: As a general rule, it is recommended to shield all conductors. If it is not practical to shield power conductors, it is recommended to shield all logic-level leads. If shielding of logic-level leads is not practical, the user should twist all logic leads with themselves to minimize induced noise. It drive, ground the shield at the drive end. If noise is generated by the drive, ground the shield at the end away from the drive. Do not ground both ends of the shield.
Fusing: The drives provide on board fusing for the AC line ($\mathrm{L} 1, \mathrm{~L} 2(230)$). Fuses are fast acting fuses rated for 15 A at 250 VAC .

Safety Warnings

READ ALL SAFETY WARNINGS BEFORE INSTALLING THIS EQUIPMENT
READ ALL SAFETY WARNINGS BEFORE INSTALLING THIS EQUIPMENT
DO NOT INSTALL, REMOVE OR REWIRE THIS EQUIPMENT WITH POWER APPLIED. Have a qual DO NOT INSTALL, REMOVE OR REWIRE THIS EQUIPMENT WITH POWER APPLIED. Have a qualified
electrical technician install, adjust and service this equipment. Follow the National Electrical Code and all other applicable electrical and safety codes, including the provisions of the Occupational Safety and Health Act (OSHA), when installing equipment.
Circuit potentials are at 115 or 230 VAC above earth gro
Circuit potentials are at 115 or 230 VAC above earth ground. Avoid direct contact with the printed circuit board or with circuit elements to prevent the risk of serious injury or fatality. Use approved
personal protection equipment and insulated tools if working with power applied. Use a nonmetallic screwdriver for adjusting the calibration trim pots.

- Reduce the chance of an electrical fire, shock, or explosion by using proper grounding techniques, over-current protection, thermal protection and enclosure. Follow sound maintenance procedures. Removing AC line power is the only acceptable method for emergency stopping. Do not use
braking, decelerating, or coasting to a stop for emergency stopping. They may not stop a drive that is malfunctioning.
Line starting and stopping (applying and removing AC line voltage) is recommended for infrequent starting and stopping of a drive only. Braking, decelerating to minimum speed, or coasting to a stop is recommended for frequent starts and stops. Frequent starting and stopping can produce high Do not disconnect any of the motor lead
disabled. Opening any one lead while the drive is running may damage the drive
The field output is for shunt wound using a permanent magnet motor
Change voltage switch settings only when the drive is disconnected from AC line voltage. Make sure both switches are set to their correct position. If the switches are improperly set to a lower voltage position, the motor will not run at full voltage and may cause damage to the transformer. If the
switches are improperly set to a higher voltage, the switches are improperly set to a higher voltage, the motor will overspeed, which may cause motor
damage, or result in bodily injury or loss of life. damage, or result in bodily injury or loss of life.
Be sure potentiometer tabs do not make contact with the potentiometer's body. Grounding the
input may cause damage to the drive This product does not have internal solid state motor overload protection. It does not contain speed-sensitive overload protection, thermal memory retention, or provisions to receive and act
upon signals from remote devices for over temperature protection. If motor protection is needed in upon signals from remote devices for over temperature protection. If motor protection is needed in
the end-use product, it needs to be provided by additional equipment in accordance with NEC standards.

Dimensions

Connections

Input Power
Connect the AC line power leads to terminals L1 and L2-115 if using 115 VAC line power or to terminals L Connect the AC line power leads to term
and L2-230 if using 230 VAC line power.

Motor

Connect the DC armature leads to terminals A1 and A2. If the motor does not spin in the desired direction power down the drive and reverse these connections.

Field

At 115 VAC , connect the field leads to terminals F 1 and L 1 for a 50 VDC field or to $F 1$ and $F 2$ for a 100 VDC field. At 230 VAC , connect the field leads to terminals F 1 and L 1 for a 100 VDC field or to F 1 and F 2 for 200 VDC field. Do not make any connections to F1 and F2 if using a permanent magnet motor.

Speed Potentiometer (Pre-wired)

Drives are pre-installed with a 10 K ohm, $1 / 4 \mathrm{~W}$ potentiometer for speed control. Set the switch on the front cover to MANUAL to follow the potentiometer

Analog Signal

Instead of using a speed adjust potentiometer, PAT443 series drives may be wired to follow an analog input signal. This input signal can be in the form of voltage ($0-10 \mathrm{VDC}$) or current ($1-5,4-20$, or $10-50 \mathrm{~mA}$). Because these drives have built in isolation, the input signal can be grounded or ungrounded floating) Connect the signal common (-) to terminal 3 and the signal reference (+) to terminal 2 on the top board.
If using a $4-20 \mathrm{~mA}$ signal, place a 1000 ohm resistor (RSH) across terminals 1 and 4 on the top board. If If using a $4-20 \mathrm{~mA}$ signal, place a 1000 ohm resistor (RSH) across terminals 1 and 4 on the top board. If
using a $10-50 \mathrm{~mA}$ signal, place a 250 ohm resistor (RSH) across terminals 1 and 4 on the top board. Set the switch on the front cover to AUTO to follow the remote analog signal.

Inhibit

Short the INHIBIT terminals to coast the motor to minimum speed. Open the INHIBIT terminals to accelerate the motor to set speed. Twist inhibit wires and seperate them from power-carrying wires or sources of electrical noise. Use shielded cable if the inhibit wires are longer than 18 inches $(46 \mathrm{~cm})$. If
shielded cable is used, ground only one end of the shield to earth ground. Do not ground both ends of the shield. Do not use the inhibit for emergency stopping.

ACE offers two accessory plug harnesses for connecting to the inhibit terminals; part number KTW-000 [18 in $(46 \mathrm{~cm})$ leads] and part number KTW-0002 [36 in $(91 \mathrm{~cm}$) leads].

Startup

Operation

Calibration

see INHIBIT in the Connections section on for a description of wiring and location.

Minimum Speed

Decelerate to Minimum Speed

Either of the two options shown below can be used to coast a motor to zero speed. Opening Switch Option \#1, or closing Switch Option \#2, decelerates the motor from set speed to zero speed at a rate determined by the DECEL trim pot setting. Closing Switch Option H1, or opening Switch option $\# 2$, win starting and stopping are required, both options can be used concurrently

Run/Stop Switch - Dynamic Brake to Zero Speed
Dynamic braking may be used to rapidly stop a motor. The MIN SPD trim pot must be set for zero speed. For the RUN/BRAKE switch, use a two pole, two position switch rated for at least the armature voltag rating and 150% of the armature current rating. For the dynamic brake resistor, use a 40 watt minimum
high power, wirewound resistor. Sizing the dynamic brake resistor depends on load inertia, motor high power, wrewo voltage, and braking time. Use a lower-value, higher-wattage dynamic brake resistor to stop a moto more rapidly. Recommended value is 15 ohms for a 90 VDC motor and 30 ohms for a 180 VDC motor

Reversing with Dynamic Brake

A dynamic brake may be used when reversing the motor direction. The MIN SPD trim pot must be set for zero speed. Use a three pole, three position switch rated for a least the armature voltage rating and 150% of the armature current rating. For the dynamic brake resistor, use a 40 watt minimum, high power, wirewound resistor. Sizing the dynamic brake resistor depends on load inertia, motor voltage, and braking time. Use a lower-value, higher-wattage dynamic brake resistor to stop a motor m rapidly. Recommended values are 15 ohms for a 90 VDC motor and 30
The motor must come to a complete stop before changing directions.

Minimum Speed (MIN SPD): The MIN SPD setting determines the minimum motor speed when the speed adjust potentiometer is set for minimum speed in MANUAL mode. It is factory set for zero speed. To calibrate the MIN SPD:

1. Set the drive to MANUAL mode.
2. Set the MIN SPD trim pot full CCW
3. Set the speed adjust potentiometer for minimum speed

Adjust old of rotation.

Signal Minimum (SIG MIN): The SIG MIN setting determines the minimum motor speed when the analog signal is set for minimum speed. To calibrate the SIG MIN:
. Calibrate the MIN SPD trim pot first.
2. Set the drive to AUTO mode.
3. Set the analog signal for minimum speed
4. Adjust the SIG MIN trim pot until the desired minimum speed is reached or is just at the threshold of rotation.

Maximum Speed (MAX SPD): The MAX SPD setting determines the maximum motor speed when the
speed adjust potentiometer is set for maximum speed. To calibrate the MAX SPD:
. Set the drive to MANUAL mode.
. Set the MAX SPD trim pot full CCW
3. Set the speed adjust potentiometer for maximum speed.

Signal Maximum (SIG MAX): The SIG MAX setting determines the maximum motor speed when the analog signal is set for maximum speed. To calibrate the SIG MAX:

1. Calibrate the MAX SPD trim pot first.
. Set the drive to AUTO mode.
2. Adjust the SIG MAX trim pot until the desired minimum speed is reached or is just at the threshold of rotation
Check the MIN SPD, SIG MIN, MAX SPD, and SIG MAX adjustments after recalibrating to verify that the motor runs at the desired minimum and maximum speed.

Torque (TORQUE): The TORQUE setting determines the maximum torque for accelerating and driving the motor. To calibrate the TORQUE:
. With the power disconnected from the drive, con
2. Set the TORQUE trim pot to minimum (full CCW).
3. Set the speed adjust potentiometer to maximum speed (full CW)
4. Carefully lock the motor armature. Be sure that the motor is firmly mounted.
5. Apply line power. The motor should be stopped.
6. Slowly adjust the TORQUE trim pot CW until the armature current is 150% of motor rated armature current. Continuous operation beyond this rating may damage the motor
8. Remove line power.
9. Remove the stall from the motor
10. Remove the ammeter in series with the motor armature if it is no longer needed

IR Compensation (IR COMP): The IR COMP setting determines the degree to which motor speed is held onstant as the motor load changes. To calibrate the IR COM

1. Set the IR COMP trim pot full CCW
 hand
2. While keeping the load on the motor, rotate the IR COMP trim pot until the motor runs at the speed measured in step 2 . If the motor oscillates (overcompensation), the IR COMP trim pot may be set too high (CW). Turn the IR COMP trim pot CCW to stabilize the motor 5. Unload the motor

Acceleration (ACCEL): The ACCEL setting determines the time the motor takes to ramp to a higher speed ACCEL is factory set for the shortest acceleration time (full CCW). To calibrate the ACCEL: 1. Set the speed adjust potentiometer for minimum speed.
2. Set the speed adjust potentiometer for maximum speed. Measure the time is takes the motor to go from minimum speed to maximum speed.
3. If the time measured in step 2 is not the desired acceleration time, turn the ACCEL trim pot CW for a longer acceleration time, or CCW for a shorter acceleration time. Repeat steps 1 through 3 until the acceleration time is correct.
Deceleration (DECEL): The DECEL setting determines the time the motor takes to ramp to a lower speed DECEL is factory set for the shortest deceleration time (full CCW). To calibrate the DECEL

1. Set the speed adjust potentiometer for maximum speed.
2. Set the speed adjust potentiometer for minimum speed. Measure the time is takes the motor to go from maximum speed to minimum speed.
If the time measured in step 2 is not the desired deceleration time, turn the DECEL trim pot CW until the deceleration time is correct.

Copyright 2021 by American Control Electronics ${ }^{\text {TM }}$ - All rights reserved. No part of this document may be reproduced or retransmitted in any form without written permission from American Control Electronics ${ }^{\mathrm{m}} \mathrm{M}$, American Control Electronics'm makes no warranty of any kind with respect to this material, including but not limited to, the implied warranties of its merchantability and fitness for a given purpose American Control Electronics ${ }^{T M}$ assumes no responsibility for any errors that may appear in this
document and makes no commitment to update or to keep current the information in this document.

